AI资讯新闻榜单内容搜索-NeurIPS

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: NeurIPS
视频生成无损提速:删除多余token,训练时间减少30%,帧率越高效果越好 | NeurIPS

视频生成无损提速:删除多余token,训练时间减少30%,帧率越高效果越好 | NeurIPS

视频生成无损提速:删除多余token,训练时间减少30%,帧率越高效果越好 | NeurIPS

卡内基梅隆大学提出了视频生成模型加速方法Run-Length Tokenization(RLT),被NeurIPS 2024选为Spotlight论文。 在精度几乎没有损失的前提下,RLT可以让模型训练和推理速度双双提升。

来自主题: AI技术研报
5665 点击    2024-11-17 14:10
NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

NeurIPS 2024 | 无需训练,一个框架搞定开放式目标检测、实例分割

本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。

来自主题: AI技术研报
2964 点击    2024-11-16 15:21
率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。

来自主题: AI技术研报
2980 点击    2024-11-16 15:13
NeurIPS 2024 Spotlight | 如何操纵时间序列预测结果?BackTime:全新的时间序列后门攻击范式

NeurIPS 2024 Spotlight | 如何操纵时间序列预测结果?BackTime:全新的时间序列后门攻击范式

NeurIPS 2024 Spotlight | 如何操纵时间序列预测结果?BackTime:全新的时间序列后门攻击范式

这篇文章获选 Neurips 2024 Spotlight,作者均来自于伊利诺伊大学香槟分校计算机系。第一作者是博士生林啸,指导老师是童行行教授。所在的 IDEA 实验室的研究兴趣涵盖图机器学习、可信机器学习、LLM 优化以及数据挖掘等方面。

来自主题: AI技术研报
4502 点击    2024-11-15 15:34
NeurIPS 2024 (Oral) | 如何量化与提升思维链的推理能力边界?

NeurIPS 2024 (Oral) | 如何量化与提升思维链的推理能力边界?

NeurIPS 2024 (Oral) | 如何量化与提升思维链的推理能力边界?

该文章的第一作者陈麒光,目前就读于哈工大赛尔实验室。他的主要研究方向包括大模型思维链、跨语言大模型等。 该研究主要提出了推理边界框架(Reasoning Boundary Framework, RBF),首次尝试量化并优化思维链推理能力。

来自主题: AI技术研报
3460 点击    2024-11-10 13:50
评估大模型不看输出看「内在」,上交大新测试指标入选NeurIPS 2024

评估大模型不看输出看「内在」,上交大新测试指标入选NeurIPS 2024

评估大模型不看输出看「内在」,上交大新测试指标入选NeurIPS 2024

能够深入大模型内部的新评测指标来了! 上交大MIFA实验室提出了全新的大模型评估指标Diff-eRank。 不同于传统评测方法,Diff-eRank不研究模型输出,而是选择了分析其背后的隐藏表征。

来自主题: AI技术研报
3240 点击    2024-11-08 19:43
文本图格式大一统!首个大规模文本边基准TEG-DB发布 | NeurIPS 2024

文本图格式大一统!首个大规模文本边基准TEG-DB发布 | NeurIPS 2024

文本图格式大一统!首个大规模文本边基准TEG-DB发布 | NeurIPS 2024

最近,来自上海大学、山东大学和埃默里大学等机构的研究人员首次提出了文本边图的数据集与基准,包括9个覆盖4个领域的大规模文本边图数据集,以及一套标准化的文本边图研究范式。该研究的发表极大促进了文本边图图表示学习的研究,有利于自然语言处理与图数据挖掘领域的深度合作。

来自主题: AI技术研报
2964 点击    2024-11-08 14:20
50s完成7B模型量化,4bit达到新SOTA,大模型低比特量化有新招了 | NeurIPS 2024 Oral

50s完成7B模型量化,4bit达到新SOTA,大模型低比特量化有新招了 | NeurIPS 2024 Oral

50s完成7B模型量化,4bit达到新SOTA,大模型低比特量化有新招了 | NeurIPS 2024 Oral

消除激活值(outliers),大语言模型低比特量化有新招了—— 自动化所、清华、港城大团队最近有一篇论文入选了NeurIPS 2024(Oral Presentation),他们针对LLM权重激活量化提出了两种正交变换,有效降低了outliers现象,达到了4-bit的新SOTA。

来自主题: AI技术研报
3597 点击    2024-11-07 20:51